

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0350 of 29 July 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product fischer Injection system FIS AB Product family Bonded fastener for use in concrete to which the construction product belongs fischerwerke GmbH & Co. KG Manufacturer Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND Manufacturing plant fischerwerke This European Technical Assessment 26 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330499-01-0601, Edition 04/2020 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-17/0350 issued on 7 June 2021

European Technical Assessment ETA-17/0350 English translation prepared by DIBt

Page 2 of 26 | 29 July 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0350 English translation prepared by DIBt

Page 3 of 26 | 29 July 2022

Specific Part

1 Technical description of the product

The "fischer injection system FIS AB" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS AB, fischer FIS AB High Speed or fischer FIS AB Low Speed and a steel element according to Annex A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 to B 5, C 1 to C 6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4
Displacements under short-term and long-term loading	See Annex C 7 and C 8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

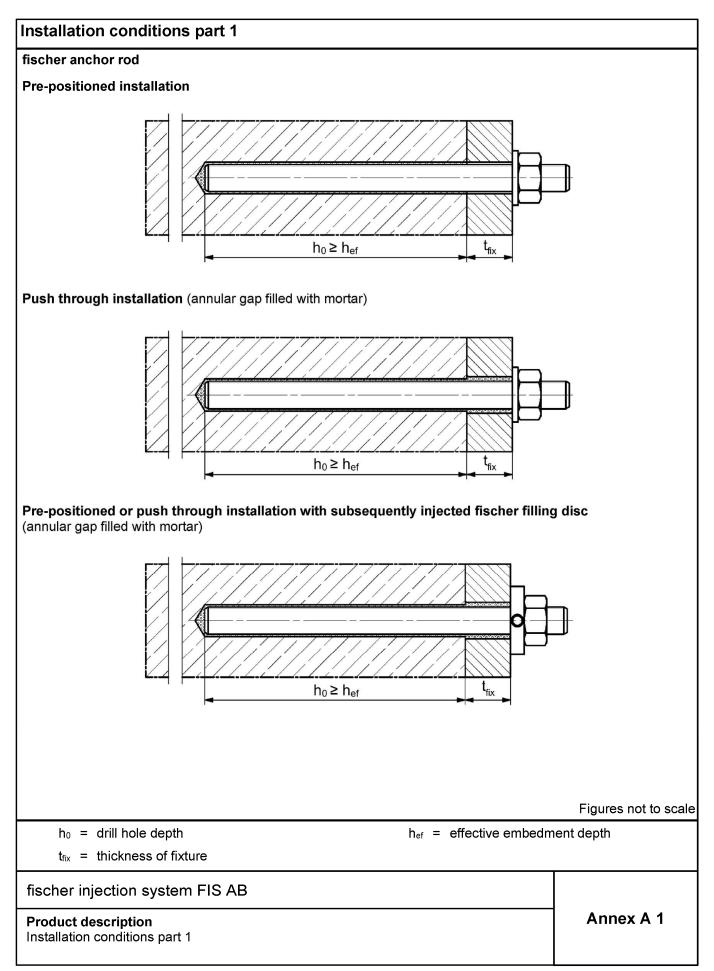
E	Essential characteristic	Performance
(Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-17/0350 English translation prepared by DIBt

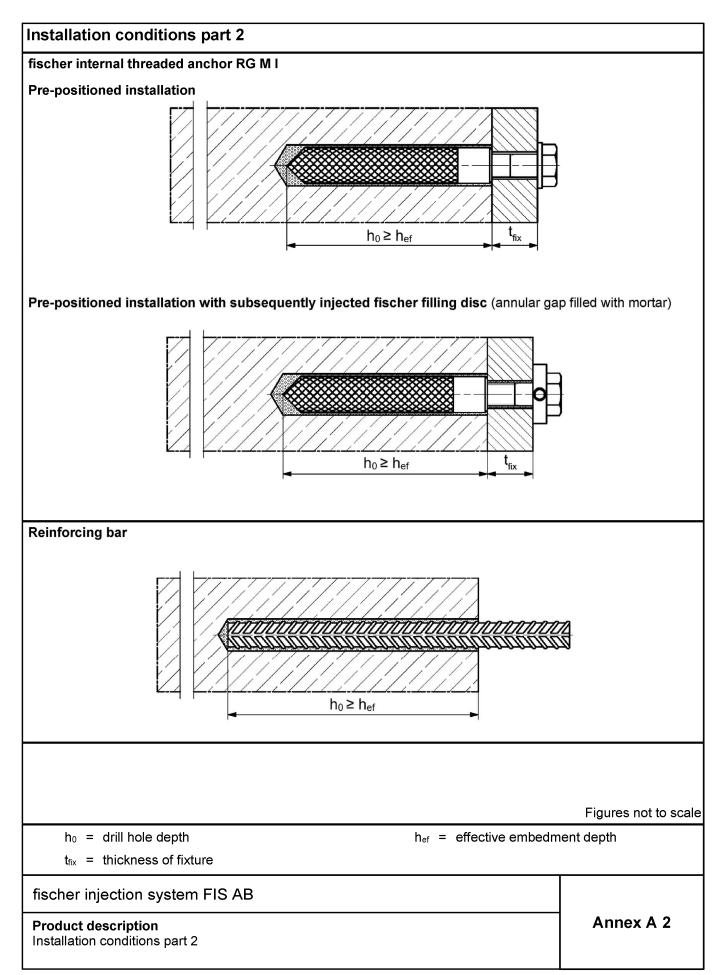
Page 4 of 26 | 29 July 2022

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin 29 July 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Overview system components part 1	
Injection cartridge (shuttle cartridge) with sealing cap; Sizes: 360 ml, 825 ml	
Imprint: FIS AB, FIS AB Low Speed or FIS AB High Speed, pro notes, shelf-life, piston travel scale (optional), curing times and p times (depending on temperature), hazard code, size, volume/w	processing reight
Injection cartridge (coaxial cartridge) with sealing cap; Sizes: 100 ml, 150 ml, 300 ml 410 ml	, 380 ml, 400 ml,
410 mi Imprint: FIS AB, FIS AB Low Speed or FIS AB High Speed, pronotes, shelf-life, piston travel scale (optional), curing times and times (depending on temperature), hazard code, size, volume/w	processing reight
Static mixer FIS MR Plus for injection cartridges up to 410 ml]
Static mixer FIS JMR for injection cartridges with 825 ml]
Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS JMR	
	1
Cleaning brush BS	
Blow-out pump AB G Compressed-air cleaning too	DI ABP
	Figures not to scale
fischer injection system FIS AB	
Product description Overview system components part 1; cartridges / static mixer / accessories	Annex A 3

Overview system components part 2	
fischer anchor rod Size: M6, M8, M10, M12, M16, M20, M24, M27, M30	
fischer internal threaded anchor RG M I	
Size: M8, M10, M12, M16, M20	
Screw / threaded rod / washer / hexagon nut	
fischer filling disc with injection adapter	
Reinforcing bar Nominal diameter: φ8, φ10, φ12, φ14, φ16, φ20	
	Figures not to scale
fischer injection system FIS AB	
Product description Overview system components part 2; metal parts, injection adapter	Annex A 4

Page 9 of European Technical Assessment ETA-17/0350 of 29 July 2022

English translation prepared by DIBt

4	Designation		Material	
1	Injection cartridge		Mortar, hardener, filler	
		Steel	Stainless steel R	High corrosion resistant steel HCR
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4: 2006+A1:2015
2	Anchor rod	$\begin{array}{l} \mbox{Property class} \\ 4.6, 4.8, 5.8 \mbox{ or } 8.8; \\ \mbox{EN ISO } 898\text{-}1\text{:}2013 \\ \mbox{electroplated} \geq 5 \ \mbox{\mum}, \\ \mbox{EN ISO } 4042\text{:}2018/\text{Zn5/An}(\text{A2K}) \\ \mbox{or hot dip galvanised} \geq 40 \ \mbox{\mum} \\ \mbox{EN ISO } 10684\text{:}2004\text{+}\text{AC}\text{:}2009 \\ \mbox{f}_{uk} \leq 1000 \ \mbox{N/mm}^2 \\ \mbox{A}_5 > 8\% \ \mbox{fracture elongation} \end{array}$	$\begin{array}{l} \mbox{Property class 50, 70 or 80} \\ \mbox{EN ISO 3506-1:2020} \\ 1.4401; 1.4404; 1.4578; \\ 1.4571; 1.4439; 1.4362; \\ 1.4062, 1.4662, 1.4462; \\ \mbox{EN 10088-1:2014} \\ f_{uk} \leq 1000 \mbox{ N/mm}^2 \\ \mbox{A}_5 > 8\% \mbox{ fracture elongation} \end{array}$	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f_{yk} = 560 N/mm ^{2;} 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² A ₅ > 8% fracture elongation
	Washer ISO 7089:2000	electroplated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014
4	Hexagon nut	Property class 4, 5 or 8 acc. EN ISO 898-2:2012 electroplated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG M I	Property class 5.8 ISO 898-1:2013 electroplated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020; 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2014
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG M I	Property class 5.8 or 8.8; EN ISO 898-1:2013 electroplated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K) A₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2014 $A_5 > 8 \%$ fracture elongation
7	fischer filling disc	electroplated \ge 5 µm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \ge 40 µm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014
8	Reinforcing bar EN 1992-1- 1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class B f_{yk} and k according to NDP or NC $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 8\%)$	or C with I according to EN 1992-1-1:200	14/NA

Z71968.22

Specifications	of intended	use part 1								
Table B1.1:	Overview use	e and perfor	mance ca	tegories						
				FIS	AB with					
		Ancho	r rod		nal threaded RG M I	Reinford	ing bar			
Hammer drilling with standard drill bit	E4444			all s	sizes					
Hammer drilling with hollow drill bi	t 🗍									
(fischer "FHD", He Expert"; Bosch "S Hilti "TE-CD, TE-\ DreBo "D-Plus", D	peed Clean"; ′D",		1		it diameter (do o 35 mm)				
Static and quasi	uncracked concrete	all sizes	Tables: C1.1	all sizes	Tables: C2.1	all sizes	Tables: C3.1			
static loading, in	cracked concrete	M8 to M20	C4.1 C5.1 C7.1	_1)	C4.1 C6.1 C7.2	φ 10 to φ 20	C4.1 C6.2 C8.1			
Seismic performance	C1	_1)								
category	C2									
Use _	l1 dry or wet concrete			all s	sizes					
category	l2 water filled hole ²⁾	M 12 to	M 30	all s	sizes	_1)				
Installation direction	on	D3 (downward a	and horizontal	and upwards	(e.g. overhea	(e.g. overhead))			
Installation tempe	rature		Т	_{i,min} = -10 °C to	o T _{i,max} = +40 °	°C				
Service	Temperature range l	-40 °C 1	:o +80 °C		ort term tempe g term temper					
temperature	Temperature range II	-40 °C to	o +120 °C		ort term tempe g term temper					
¹⁾ Performance ²⁾ Valid for shutt	not assessed le cartridges with	n 360 ml, 825 r	nl and coax	ial cartridges v	with 380 ml, 4	00 ml, 410 ml				
fischer injectio	n system FIS	AB								
Intended use Specifications pa	rt 1					Anne	Annex B 1			

Specifications of intended use part 2

Base materials:

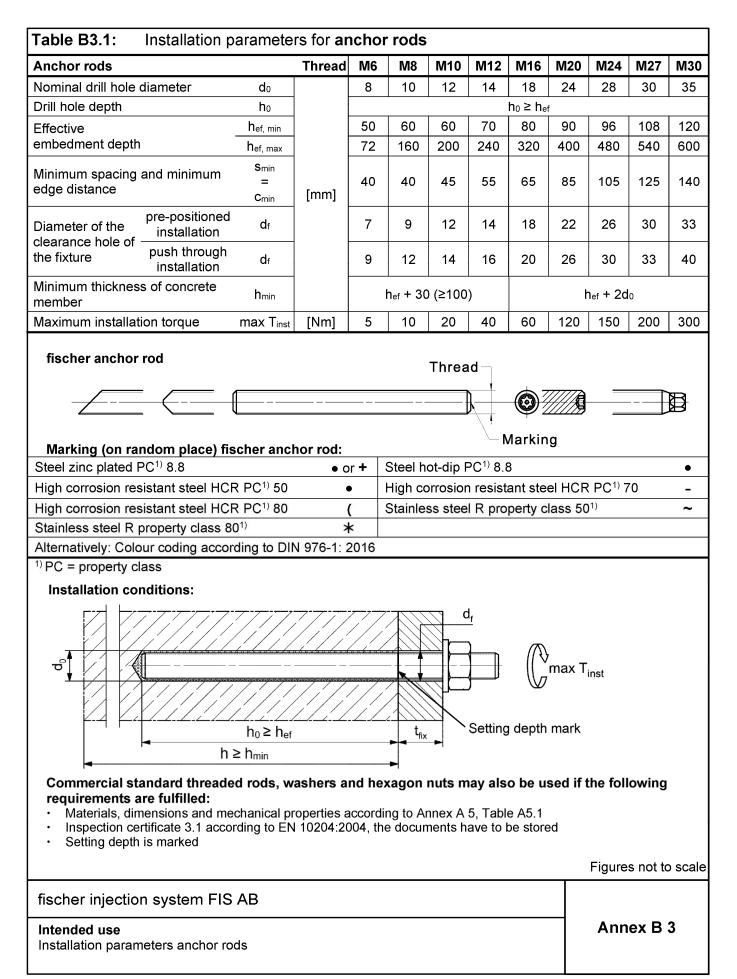
Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 5 Table 5.1.

Design:

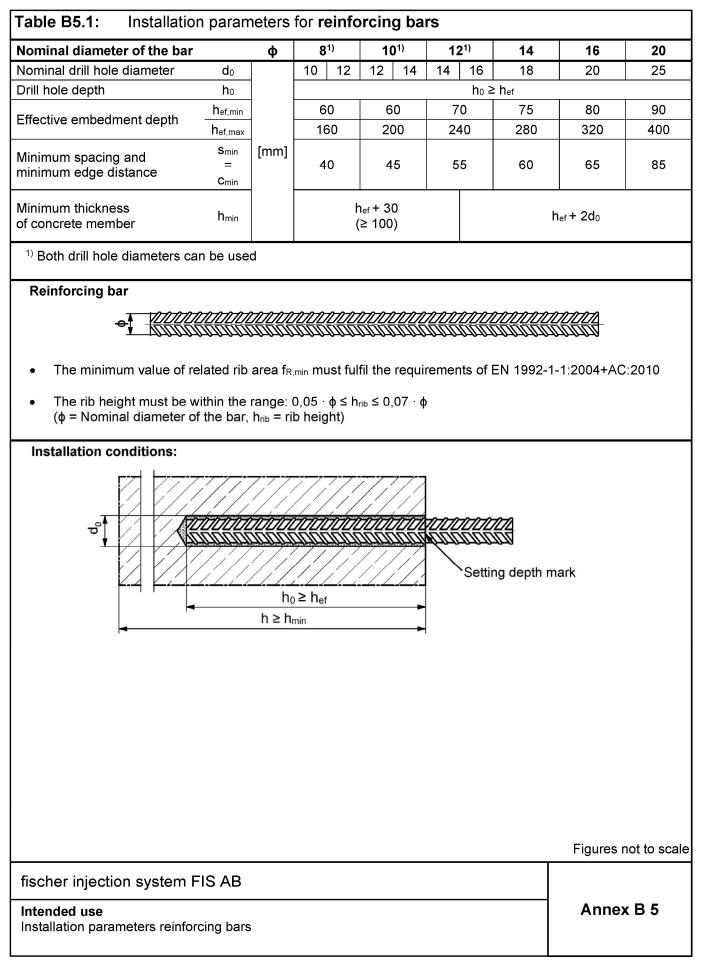
- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.


Installation:

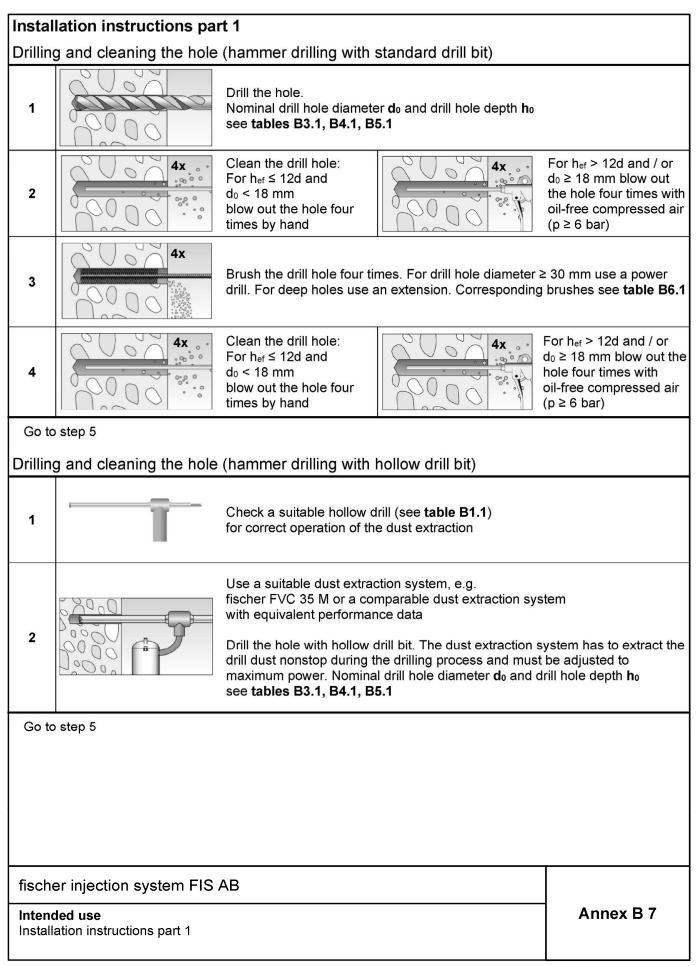
- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening depth should be marked and adhered to installation
- Overhead installation is allowed (necessary equipment see installation instruction)

fischer injection system FIS AB

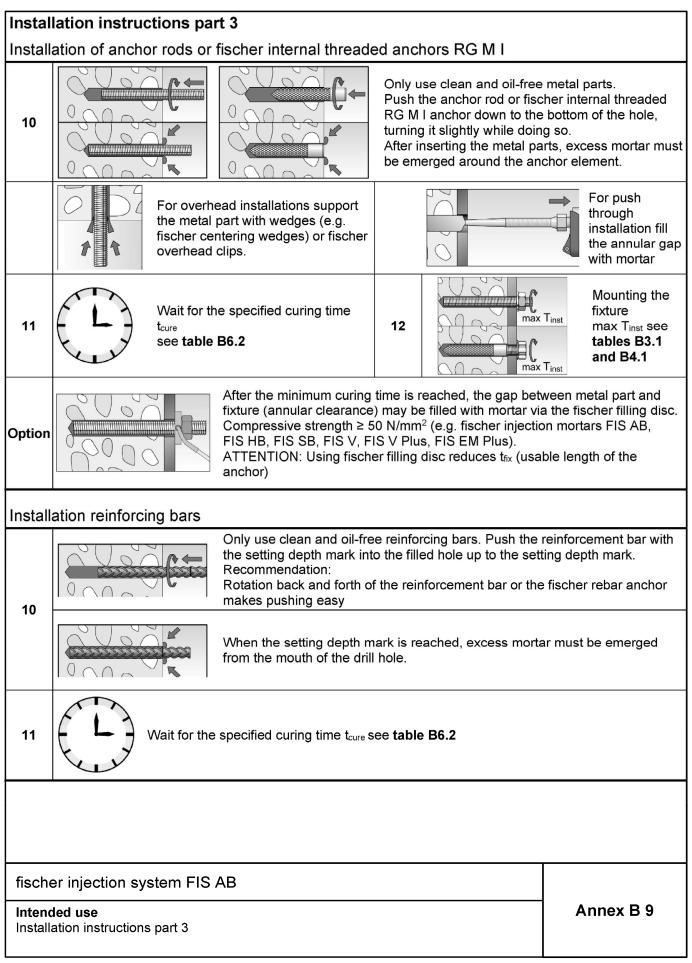
Intended use Specifications part 2 Annex B 2



	RGMI.	Thread	M8	M10	M12	M16	M20
Diameter of anchor	$d_{nom} = d_H$		12	16	18	22	28
Nominal drill hole diameter	d ₀		14	18	20	24	32
Drill hole depth	h₀				$h_0 \ge h_{ef} = L_H$		
Effective embedment depth (h _{ef} = L _H)	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	$I_{E,max}$		18	23	26	35	45
Minimum screw-in depth	I _{E,min}		8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120
Retaining bolt or threaded r			d washer)	must comply	with the appro	opriate materi	al and
strength class of Annex A E			d washer)		with the appro	opriate materi	al and
strength class of Annex A E	5, Table A5.						al and



lominal drill hole liameter	d₀		8	10	12	14	16	18	20	24	25	28	30	35
Steel brush iameter BS	db	[mm]	9	11	14	16	2	0	25	26	27	30	4	0
able B6.2	Мах	imum		essin	ng time	e of th	e mor	tar an			n curii			1
Temperature at twork									mum cu	n curing time ¹⁾ t _{cure}				
anchoring base [°C]			S AB Speed	F	IS AB		FIS AB F Low Speed Higl				FIS /	S AB FIS AB Low Speed		
-10 to	-5 ²⁾		-		-		-		12 h		-		-	
> -5 to	0 ²⁾	5	min		-		-		3 h		24	h	-	
> 0 to	5 ²⁾	5	min	1	13 min		-		3 h		3 ł	า	6	h
> 5 to 1	10	3	min		9 min		20 min		50 mi	n	90 n	nin	3	h
> 10 to 2	20	1	min		5 min		10 min		30 mi	n	60 m	nin	2	h
	30		-		4 min		6 min		-		45 n	nin	60 ı	nin
> 30 to 4	40		-		2 min		4 min		-		35 n	nin	30 ı	nin
²⁾ Minimal cartric	age ten	nperatu												



Instal	lation instructions pa	rt 2								
Prepa	ring the cartridge									
5	Mark the setting depth.									
) = ← =	Remove the sealing o	сар							
6		Screw on the static mixer (the spiral in the static mixer must be clearly visible)								
7	Fischer cz	Place the cartridge into the								
8	X		em of material out until colour. Do not use grey							
Go to	step 9									
Injecti	on of the mortar									
9	For $h_0 = h_{ef}$ fill approximate the drill hole with mortar. For $h_0 > h_{ef}$ more mortar is need Always begin from the botto the hole and avoid bubbles	or ded. om of	depth ≥ 150 mm sion tube		ead installation, deep > 250 mm) use an adapter					
Go to	step 10									
fische	er injection system FIS	AB								
	led use ation instructions part 2				Annex B 8					

Page 19 of European Technical Assessment ETA-17/0350 of 29 July 2022

		ided roo			M6	M8	M10	M12	M16	M20	M24	M27	M30
Chara	acteristic resistance to			unde		-	· · · · · · · · · · · · · · · · · · ·						
			4.6		8	1	23(21)	33	63	98	141	184	224
Istic N _{Rk,s}			4.8	1	8		23(21)	33	63	98	141	184	224
e N S N	Steel zinc plated	° بر			10	19(17)		43	79	123	177	230	281
Characteristic esistance N _{Rk}		Property class	5.8 8.8	[kN]	16		47(43)	68	126	196	282	368	449
iara ista	Stainless steel R and	D D	50		10	19	29	43	79	123	177	230	281
	high corrosion		70		14	26	41	59	110	172	247	322	393
	resistant steel HCR		80		16	30	47	68	126	196	282	368	449
Partia	Il factors 1)												
			4.6						2.00				
	Steel zinc plated	~	4.8						1.50				
lal tac Y _{Ms,N}	·	ropert	5.8 8.8						1.50				
tan ,	Stainless steel R and	Property class	<u>8.8</u> 50	[-]					1.50				
ເບ	<u>с</u>	<u>50</u> 70	┥┝				1 /	<u>2.86</u> 50 ²⁾ / 1.	87				
	high corrosion resistant steel HCR		80					1.5	1.60	07			
Chara	acteristic resistance to	steel fa	-	unde	er shea	r loadi	na ³⁾		1,00				
	ut lever arm	0100111					.9						
			4.6		4	9(8)	14(13)	20	38	59	85	110	135
ristic V ⁰ _{Rk,s}	Stool zine plated		4.8		4	9(8)	14(13)	20	38	59	85	110	135
51 21 > 7	Steel zinc plated	s s	5.8		6	11(10)	17(16)	25	47	74	106	138	168
aracter stance		Property class	5.8 8.8	[kN]	8	15(13)	23(21)	34	63	98	141	184	225
l esi ci	Stainless steel R and	L L	50		5	9	15	21	39	61	89	115	141
	high corrosion		70	-	7	13	20	30	55	86	124	161	197
	resistant steel HCR		80		8	15	23	34	63	98	141	184	225
	ty factor		k 7	[-]					1,0				
	ever arm		4.0			15(12)	20(27)	50	100	250	440	COF	000
M ⁰ Rk,s			<u>4.6</u> 4.8	-	<u>6</u>		30(27) 30(27)	<u>52</u> 52	133 133	259 259	448 448	665 665	899 899
No No	Steel zinc plated	erty ss	5.8		7		37(33)	65	166	324	560	833	1123
cre		ropert class		[Nm]	12		60(53)	105	266	519	896	1333	1797
Cnaracteristic esistance M ⁰ _{Rk}	Stainless steel R and	Prope clas	50	· ·	7	19	37	65	166	324	560	833	1123
	high corrosion		70		10	26	52	92	232	454	784	1167	1573
<u> </u>	resistant steel HCR		80		12	30	60	105	266	519	896	1333	1797
Partia	Il factors ¹⁾			,									
			4.6						1.67				
artial factor	Steel zinc plated	ح	4.8						1.25				
lal tac Y _{Ms,} ∨		Property class	<u>5.8</u> 8.8	r_1					1.25				
- ⊻ Tal	Stainless steel R and	d g	<u>0.0</u> 50	[-]					<u>1.25</u> 2.38				
ה מ	high corrosion	۵.	<u> </u>					1 1	 25 ²⁾ / 1.	56			
	resistant steel HCR		80					1.4	1.33	50			
²⁾ On	absence of other nationa Ily admissible for high col lues in brackets are valid	rrosion re	ions esist.						• 12 % (
fisch	ner injection system	FIS AE	3										

Page 20 of European Technical Assessment ETA-17/0350 of 29 July 2022

English translation prepared by DIBt

Stance to stee Property class Property class 70	5.8	under	tension lo						
Rk,s Class Property	8.8 R			ading					
Rk,s Class Property	R		19	29	43	79	123		
Property	R	EL A 13	29	47	68	108	179		
	HCR	[kN] -	26	41	59	110	172		
	11013		26	41	59	110	172		
	ŀ	I							
Property	5.8				1,50				
class	8.8		1,50						
Property	R				1,87				
class 70	HCR				1,87				
stance to steel	failure	under	shear load	ding					
				-					
Property	5.8		9,2	14,5	21,1	39,2	62,0		
class	8.8		14,6	23,2	33,7	54,0	90,0		
Rk,s Property	R		12,8	20,3	29,5	54,8	86,0		
class 70	HCR		12,8	20,3	29,5	54,8	86,0		
	k 7	[-]			1,0				
Property	5.8		20	39	68	173	337		
class	8.8	Nm1	30	60	105	266	519		
Property	R		26	52	92	232	454		
class 70	HCR		26	52	92	232	454		
Property	5.8				1,25				
	8.8	r-1			1,25				
Property	R								
class 70	HCR				1,56				
	ISIN Property class 70 stance to steel Property class Property class 70 Property class 70 Property class 70 Property class 70 Property class 70	$\frac{Property}{class 70} = \frac{R}{HCR}$ stance to steel failure $\frac{Property}{class 70} = \frac{5.8}{8.8}$ $\frac{Property}{class 70} = \frac{R}{HCR}$ $\frac{Property}{class 70} = \frac{R}{HCR}$ $\frac{Property}{class 70} = \frac{R}{HCR}$ $\frac{Property}{class 70} = \frac{5.8}{8.8}$ $\frac{Property}{class 70} = \frac{R}{HCR}$ $\frac{Property}{class 70} = \frac{R}{HCR}$ $\frac{Property}{class 70} = \frac{R}{R}$	$\frac{Property}{class 70} \xrightarrow{R} HCR \begin{bmatrix} -1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\frac{Property}{class 70} \xrightarrow{R} HCR \begin{bmatrix} -1 \\ \hline \\ $	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	$\frac{Property}{class 70} \frac{R}{HCR} [-] 1,87 $	$\frac{Property}{class 70} \frac{R}{HCR} \begin{bmatrix} -1 \\ & & & & \\ \hline & & \\ \hline & & \\ \hline \\ \hline$		

Characteristic resistance to steel failure under shear loading of fischer internal threaded anchor RG M I

Table C3.1: Characteris reinforcing	tic restistanc j bars	e to stee	l failure u	inder tens	sion / she	ar loadin	g of
Nominal diameter of the bar	ф	8	10	12	14	16	20
Characteristic resistance to st	eel failure und	er tension	loading		-		
Characteristic resistance	N _{Rk,s} [kN]			A _s ·	f uk ²⁾		
Characteristic resistance to st	eel failure und	er shear lo	ading				
Without lever arm							
Characteristic resistance	V ⁰ _{Rk,s} [kN]				$h_{s} \cdot f_{uk^{2}}$		
Ductility factor	k7 [-]			1	,0		
With lever arm							
Characteristic resistance	M ⁰ Rk,s [Nm]			1,2 · W	$J_{\rm el} \cdot f_{\rm uk^{2)}}$		
 k₆ = 0,6 for fasteners mad = 0,5 for fasteners mad = 0,5 for fasteners mad ²⁾ f_{uk} respectively must be tak 	de of carbon ste de of stainless s	el with 500 teel) < f _{uk} ≤ 100	0 N/mm²			
fination system 51							
fischer injection system FI	2 AB					_	• •
Performances Characteristic resistance to stee	el failure under t	ension / sh	ear loading	of reinforci	ing	Anne	x C 3

bars

Size							All size	s			
Characteristic resistance to	concrete fa	ailure u	inder ti	ensior	loadin			•			
Installation factor	γinst	[-]			louun	-	nex C (5 to C 6	;		
Factors for the compressiv	•		rete > (C20/25	<u> </u>	000 41					
	C25/30			020/20	·		1,05				
-	C30/37	-					1,10				
Increasing factor ψ_c for cracked or uncracked	C35/45						1,15				
concrete	C40/50	- [_]					1,19				
$\tau_{\rm Rk} = \psi_{\rm c} \cdot \tau_{\rm Rk} (C20/25) $	C45/55	-					1,22				
-	C50/60	-					1,26				
Splitting failure							,				
h / h _{ef}	≥ 2,0						1,0 h _{ef}				
Edge $20 > h/h_{c}$						4,6	h _{ef} - 1,				
distance $\frac{2,0 \times 11 / h_{ef}}{h / h_{ef}}$		[mm]					2,26 h _e				
Spacing	S _{cr,sp}						2 C _{cr,sp}				
Concrete failure											
Uncracked concrete	k ucr,N						11,0				
Cracked concrete	k cr,N	[-]					7,7				
Edge distance	Ccr,N	r					1,5 h _{ef}				
Spacing	Scr,N	[mm]					2 C _{cr,N}				
Factors for sustained tension	on loading										
Temperature range		[°C]		Ę	50 / 80				72 / 1	20	
Factor	Ψ^0_{sus}	[-]			0,74				0,87	7	
Characteristic resistance to			inder s	hear l					,		
Installation factor	γinst	[-]		incur i	buung		1,0				
Concrete pry-out failure	Yinsi						1,0				
Factor for pry-out failure	k ₈	[-]					2,0				
Concrete edge failure							2,0				
Effective length of fastener in shear loading	lf	[mm]			n≤ 24 m n> 24 m) mm)		
Calculation diameters							、 ,	,	,		
Size			M6	M8	M10	M12	M16	M20	M24	M27	M30
fischer anchor rods and standard threaded rods	d _{nom}		6	8	10	12	16	20	24	27	30
fischer internal threaded anchors RG	GMI d _{nom}	[mm]	_1)	12	16	18	22	28	_1)	_1)	_1)
Size (nominal diameter of the	ebar) φ	[]	8		10	12		14	16		20
Reinforcing bar	d _{nom}	[mm]	8		10	12		14	16		20
¹⁾ Anchor type not part of thi		nt									
fischer injection system Performances Characteristic resistance to o		ire und	er tensi	ion / sł	near load	ding			An	nex C	4

Table C5.1:	Characte fischer a uncracke	nchor	rods an	d star	ndard							es;
Anchor rod / s	tandard threa	ded rod		M6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pul	I-out and cond	rete co	ne failure	,								
Calculation dia	meter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked co	ncrete									-		
Characteristic	bond resistar	ice in u	ncracked	concre	ete C20	/25						
Hammer-drilling	<u>g with standard</u>	drill bit	or hollow	drill bit	(dry or v	<u>wet con</u>	<u>crete)</u>					
	50 °C / 80 °C		PN 1 23	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
range II: 7	′2 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling	g with standard	drill bit	or hollow	drill bit	(water f	illed hol	e)					
	50 °C / 80 °C			_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
perature	72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
range II: 7				_ /	_ /		7,5	1,0	0,5	0,0	0,0	0,0
Dry or wet cond								1,0				
Water filled hole		γinst	[-]	_2)	_2)	_2)		1,0	1 :	2 ¹⁾		
Cracked conc	-						_		1,2	-		
Characteristic		ice in ci	acked co	oncrete	C20/2	5						
Hammer-drilling							crete)					
	50 °C / 80 °C			_2)	5,5	6,0	6,0	6,0	5,5	_2)	_2)	_2)
perature	72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	4,5	5,0	6,0	6,0	5,0	_2)	_2)	_2)
range II: / Hammer-drilling		drill bit o			,	,		0,0	5,0	- ′	- /	/
				_2)				5.0	4.5	_2)	_2)	_2)
perature	50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm ²]				5,0	5,0	4,5			
	′2 °C / 120 °C			_2)	_2)	_2)	4,0	4,0	4,0	_2)	_2)	_2)
Installation fac				0)	1							
Dry or wet conc		γinst	[-]	_2)	2)	2)	1,0	1)		_2)	_2)	_2)
Water filled hole	shuttle cartridge	•		_2)	_2)	_2)		1,2 ¹⁾		_2)	_2)	_2)
	nce not assess		, 0L	an					,	,		
Performances	tion system I s resistance to c			and cor		ailure fo	rfische	r ancho		An	nex C	5

Z71968.22

rod and standard threaded rods

Table C6.1: Characte fischer ir uncracke	nternal	thread					te failure d holes;	for
Internal threaded anchor RG	i M I		M8	M10	М	12	M16	M20
Combined pull-out and cond	rete co	ne failure	1					
Calculation diameter	d	[mm]	12	16	1	8	22	28
Uncracked concrete								
Characteristic bond resistan	ice in u	ncracked	concrete (C20/25				
Hammer-drilling with standard	drill bit	or hollow of	drill bit (dry	or wet con	<u>crete)</u>			
Tem- I: 50 °C / 80 °C		FN1 (10,5	10,0	9	,5	9,0	8,5
perature range II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	9,0	8,0	8	,0	7,5	7,0
Hammer-drilling with standard	drill bit	or hollow of	drill bit (wat	er filled hol	<u>e)</u>			
Tem- I: 50 °C / 80 °C			10,0	9,0	9	,0	8,5	8,0
perature	$ au_{Rk,ucr}$	[N/mm ²]	7,5	6,5		,5	6,0	6,0
range II: 72°C7120°C			7,0	0,0		,0	0,0	0,0
Dry or wet concrete					1	,0		
Water filled hole	γinst	[-]				<u>2</u> 1)		
¹⁾ Valid for shuttle cartridges	with 36	0 ml, 825	ml and coa	xial cartrido	,		ml, 410 ml	
Table C6.2: Characte	ristic re	esistance	e to com t	pined pul	I-out and	concre	te failure	for
reinforci	ng bar	s in ham	nmer drille	ed holes;	uncracke	ed or cra	icked cor	ncrete
Nominal diameter of the bar		ф	8	10	12	14	16	20
Combined pull-out and cond	rete co	ne failure	1					
Calculation diameter	d	[mm]	8	10	12	14	16	20
Uncracked concrete								
Characteristic bond resistan	ice in u	ncracked	concrete (C20/25				
Hammer-drilling with standard	drill bit	or hollow of	drill bit (dry	or wet con	<u>crete)</u>			
Tem- I: 50 °C / 80 °C	_	[NI/mm ²]	11,0	11,0	11,0	10,0	10,0	9,5
perature II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0
Installation factor					I			
Dry or wet concrete	γinst	[-]			1	,0		
Cracked concrete								
Characteristic bond resistan	ice in ci	racked co	oncrete C2	0/25				
Hammer-drilling with standard	drill bit	or hollow o	drill bit (dry	or wet con	<u>crete)</u>			
Tem- I: 50 °C / 80 °C		EN 1 (23	_1)	3,0	5,0	5,0	5,0	4,5
perature range II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_1)	3,0	4,5	4,5	4,5	4,0
Installation factor			I					
Dry or wet concrete	γinst	[-]	_1)			1,0		
¹⁾ Performance not assessed	I							
fischer injection system I	FIS AB						_	
Performances Characteristic resistance to co threaded anchors RG M I and			and concret	te failure fo	r fischer inte	ernal	Anne	k C 6

Anchor	rod	M6	M8	M10	M12	M16	M20	M24	M27	M30
Displace	ement-Factors	for tensi	on loadin	g ¹⁾				1	•	
Uncrack	ed concrete;]	「emperat	ure range	I, II						
δ N0-Factor	[mm/(N/mm ²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
δN∞-Factor		0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked	concrete; Ter	-	· · · · ·				L			
δ N0-Factor	[mm/(N/mm ²)]	_3)	0,12	0,12	0,12	0,13	0,13	_3)	_3)	_3)
δ N0-Factor	[_3)	0,25	0,27	0,30	0,30	0,30	_3)	_3)	_3)
•	ement-Factors		-							
1	ed or cracked					0.40			0.00	
δ V0-Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
δ∨∞-Factor		0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09
¹⁾ Calcu	lation of effectiv	/e displac	ement:		²⁾ Calo	culation of	effective of	displaceme	ent:	
δ _{N0} =	$\delta_{N0-Factor}\cdot au$				δvo	= δ_{V0} -Factor	·V			
δ _{N∞} =	$\delta_{N\infty\text{-Factor}}\cdot au$				δv∞	= $\delta_{V\infty}$ -Factor	·V			
_							•			
³⁾ Perfor	acting bond str mance not asse C7.2: Disp	essed		n loading f ischer i l		U	ear loading		I	
³⁾ Perfor Table C	mance not asso 7.2: Disp threaded	essed	ents for f	Ū		U	ear loading			120
³⁾ Perfor Table C Internal anchor F	mance not asse 7.2: Disp threaded RG M I	essed blaceme Ma	ents for 1 3	fischer in M10		hreaded	ear loading	s RG M		120
³⁾ Perfor Table C Internal anchor F Displace	mance not asso 7.2: Disp threaded	essed placeme Ma for tensi	ents for f 3 on loadin	fischer in M10 g ¹⁾		hreaded	ear loading	s RG M		120
³⁾ Perfor Table C Internal anchor F Displace Uncrack διω Ecotor	mance not asso C7.2: Disp threaded RG M I ement-Factors red concrete; T	essed placeme Ma for tensi	ents for f 3 on loadin ure range	fischer in M10 g ¹⁾		hreaded	ear loading	s RG M	N	120
³⁾ Perfor Table C Internal anchor F Displace Uncrack δ _{N0-Factor}	mance not ass 7.2: Disp threaded RG M I ement-Factors	essed Diaceme Ma for tensi Femperat	ents for f 3 on loadin ure range 0	fischer in M10 g ¹⁾		hreadec M12	ear loading	rs RG M M16	0	
³⁾ Perfor Table C Internal anchor F Displace Uncrack δNo-Factor δN∞-Factor	mance not asso C7.2: Disp threaded RG M I ement-Factors red concrete; T	essed Diaceme Ma for tensi Cemperat 0,1 0,1	ents for f on loadin ure range 0 3	fischer in M10 g ¹⁾ i I, II 0,11 0,14		hreadec M12	ear loading	rs RG M M16	0	,14
³⁾ Perfor Table C Internal anchor F Displace Uncrack δ _{N0-Factor} δ _{N∞-Factor}	mance not asse C7.2: Disp threaded RG M I ement-Factors red concrete; T [mm/(N/mm ²)]	essed Diaceme Ma for tensi Temperat 0,1 0,1 for shea	ents for f on loadin ure range 0 3 r loading ²	fischer in M10 g ¹⁾ i, II 0,11 0,14		hreadec M12	ear loading	rs RG M M16	0	,14
³⁾ Perfor Table C Internal anchor F Displace Uncrack δNo-Factor Displace Uncrack	mance not asse 27.2: Disp threaded RG M I ement-Factors red concrete; T [mm/(N/mm ²)] ement-Factors red concrete; T	essed Diaceme Ma for tensi Temperat 0,1 0,1 for shea	ents for f on loadin ure range 0 3 r loading ² ure range	fischer in M10 g ¹⁾ i, II 0,11 0,14		hreadec M12	ear loading	rs RG M M16	0 0	,14
³⁾ Perfor Table C Internal anchor F Displace Uncrack δ _{No-Factor} Displace Uncrack δ _{Vo-Factor}	mance not asso 7.2: Disp threaded RG M I ement-Factors ed concrete; T [mm/(N/mm ²)] ement-Factors	essed Diaceme Ma for tensi Cemperat 0,1 for shea Cemperat	ents for f on loadin ure range 0 3 r loading ² ure range 2	fischer in M10 g ¹⁾ 1, II 0,11 0,14		hreaded M12 0,12 0,15	ear loading	ns RG M M16 0,13 0,16	0 0 0	,14 ,18
³⁾ Perfor Table C Internal anchor F Displace Uncrack δNo-Factor Displace Uncrack δνo-Factor δνo-Factor δνo-Factor	mance not asse 27.2: Disp threaded RG M I ement-Factors red concrete; T [mm/(N/mm ²)] ement-Factors red concrete; T	essed placeme Ma for tensi Temperat 0,1 for shea Temperat 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	ents for 1 on loadin ure range 0 3 r loading ² ure range 2 4	fischer in M10 g ¹⁾ i, II 0,11 0,14) i, II 0,12	nternal t	hreaded M12 0,12 0,15 0,12 0,12 0,14	ear loading	rs RG M M16 0,13 0,16 0,12 0,12 0,14		,14 ,18 ,12
³⁾ Perfor Table C Internal anchor F Displace Uncrack δNo-Factor Displace Uncrack δVo-Factor δVo-Factor	mance not asse C7.2: Disp threaded RG M I ement-Factors red concrete; T [mm/(N/mm ²)] ement-Factors red concrete; T [mm/kN]	essed placeme Ma for tensi Temperat 0,1 for shea Temperat 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	ents for 1 on loadin ure range 0 3 r loading ² ure range 2 4	fischer in M10 g ¹⁾ i, II 0,11 0,14) i, II 0,12	nternal t	hreaded M12 0,12 0,15 0,12 0,12 0,14	ar loading	rs RG M M16 0,13 0,16 0,12 0,12 0,14		,14 ,18 ,12
³⁾ Perfor Table C Internal anchor F Displace Uncrack δNo-Factor Displace Uncrack δVo-Factor δVo-Factor	mance not asse C7.2: Disp threaded RG M I ement-Factors red concrete; T [mm/(N/mm ²)] ement-Factors red concrete; T [mm/kN] lation of effective	essed placeme Ma for tensi Temperat 0,1 for shea Temperat 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	ents for 1 on loadin ure range 0 3 r loading ² ure range 2 4	fischer in M10 g ¹⁾ i, II 0,11 0,14) i, II 0,12	2) (hreaded M12 0,12 0,15 0,12 0,14 Calculatior	ar loading	rs RG M M16 0,13 0,16 0,12 0,12 0,14		,14 ,18 ,12
³⁾ Perfor Table C Internal anchor F Displace Uncrack δ_{N0} -Factor Displace Uncrack δ_{N0} -Factor Displace Uncrack δ_{V0} -Factor 1) Calcul $\delta_{N0} = 1$ $\delta_{N\infty} = 1$	mance not asse c7.2: Disp threaded RG M I ement-Factors red concrete; T [mm/(N/mm ²)] ement-Factors red concrete; T [mm/kN] lation of effectiv δ _{N0-Factor} · τ δ _{N∞-Factor} · τ	essed placeme Ma for tensi Temperat 0,1 0,1 for shea Temperat 0,1 0,1 ve displac	ents for f on loadin ure range 0 3 r loading ² ure range 2 4 ement:	fischer in M10 g ¹⁾ i, I, II 0,11 0,14 0,12 0,12 0,14	2) (hreaded M12 0,12 0,12 0,15 0,12 0,14 Calculation $\delta_{V0} = \delta_{V0-Fe}$ $\delta_{V\infty} = \delta_{V\infty-F}$	ar loading	rs RG M M16 0,13 0,16 0,12 0,14 ve displac		,14 ,18 ,12
³⁾ Perfor Table C Internal anchor F Displace Uncrack δ_{N0} -Factor Displace Uncrack δ_{N0} -Factor Displace Uncrack δ_{V0} -Factor 1) Calcul $\delta_{N0} = 1$ $\delta_{N\infty} = 1$	mance not asse C7.2: Disp threaded RG M I ement-Factors red concrete; T [mm/(N/mm ²)] ement-Factors red concrete; T [mm/kN] lation of effective δ _{N0-Factor} · τ	essed placeme Ma for tensi Temperat 0,1 0,1 for shea Temperat 0,1 0,1 ve displac	ents for f on loadin ure range 0 3 r loading ² ure range 2 4 ement:	fischer in M10 g ¹⁾ i, I, II 0,11 0,14 0,12 0,12 0,14	2) (hreaded M12 0,12 0,12 0,15 0,12 0,14 Calculation $\delta_{V0} = \delta_{V0-Fe}$ $\delta_{V\infty} = \delta_{V\infty-F}$	ar loading	rs RG M M16 0,13 0,16 0,12 0,14 ve displac		,14 ,18 ,12
³⁾ Perfor Table C Internal anchor F Displace Uncrack δ_{N0} -Factor Displace Uncrack δ_{N0} -Factor Displace Uncrack δ_{V0} -Factor 1) Calcul $\delta_{N0} = 1$ $\delta_{N0} = 1$	mance not asse c7.2: Disp threaded RG M I ement-Factors red concrete; T [mm/(N/mm ²)] ement-Factors red concrete; T [mm/kN] lation of effectiv δ _{N0-Factor} · τ δ _{N∞-Factor} · τ	essed placeme Ma for tensi Temperat 0,1 0,1 for shea Temperat 0,1 0,1 ve displac	ents for f on loadin ure range 0 3 r loading ² ure range 2 4 ement:	fischer in M10 g ¹⁾ i, I, II 0,11 0,14 0,12 0,12 0,14	2) (hreaded M12 0,12 0,12 0,15 0,12 0,14 Calculation $\delta_{V0} = \delta_{V0-Fe}$ $\delta_{V\infty} = \delta_{V\infty-F}$	ar loading	rs RG M M16 0,13 0,16 0,12 0,14 ve displac		,14 ,18 ,12
³⁾ Perfor Table C Internal anchor F Displace Uncrack $\delta_{N0-Factor}$ Displace Uncrack $\delta_{N\infty-Factor}$ Displace Uncrack $\delta_{V0-Factor}$ 1) Calcul $\delta_{N0} =$	mance not asse c7.2: Disp threaded RG M I ement-Factors red concrete; T [mm/(N/mm ²)] ement-Factors red concrete; T [mm/kN] lation of effectiv δ _{N0-Factor} · τ δ _{N∞-Factor} · τ	essed placeme Ma for tensi Temperat 0,1 0,1 for shea Temperat 0,1 0,1 ve displac	ents for f on loadin ure range 0 3 r loading ² ure range 2 4 ement:	fischer in M10 g ¹⁾ i I, II 0,11 0,14 0,12 0,12 0,14	2) (hreaded M12 0,12 0,12 0,15 0,12 0,14 Calculation $\delta_{V0} = \delta_{V0-Fe}$ $\delta_{V\infty} = \delta_{V\infty-F}$	ar loading	rs RG M M16 0,13 0,16 0,12 0,14 ve displac		,14 ,18 ,12
³⁾ Perfor Table C Internal anchor F Displace Uncrack δ_{N0} -Factor Displace Uncrack δ_{N0} -Factor Displace Uncrack δ_{V0} -Factor 1) Calcul $\delta_{N0} = 1$ $\delta_{N0} = 1$	mance not asse c7.2: Disp threaded RG M I ement-Factors red concrete; T [mm/(N/mm ²)] ement-Factors red concrete; T [mm/kN] lation of effectiv δ _{N0-Factor} · τ δ _{N∞-Factor} · τ	essed placeme Ma for tensi Temperat 0,1 0,1 for shea Temperat 0,1 0,1 ve displac	ents for f on loadin ure range 0 3 r loading ² ure range 2 4 ement:	fischer in M10 g ¹⁾ i I, II 0,11 0,14 0,12 0,12 0,14	2) (hreaded M12 0,12 0,12 0,15 0,12 0,14 Calculation $\delta_{V0} = \delta_{V0-Fe}$ $\delta_{V\infty} = \delta_{V\infty-F}$	ar loading	rs RG M M16 0,13 0,16 0,12 0,14 ve displac		,14 ,18 ,12
³⁾ Perfor Table C Internal anchor F Displace Uncrack $\delta_{N0-Factor}$ Displace Uncrack $\delta_{V0-Factor}$ ¹⁾ Calcul $\delta_{N0} =$ $\delta_{N\infty} =$ $\tau =$	mance not asse c7.2: Disp threaded RG M I ment-Factors red concrete; T [mm/(N/mm ²)] ment-Factors red concrete; T [mm/kN] lation of effectiv δN0-Factor · τ δN∞-Factor · τ acting bond str	essed placeme Ma for tensi Cemperat 0,1 0,1 for shea Cemperat 0,1 ve displac	ents for 1 on loadin ure range 0 3 r loading ² ure range 2 4 ement: der tension	fischer in M10 g ¹⁾ i I, II 0,11 0,14 0,12 0,12 0,14	2) (hreaded M12 0,12 0,12 0,15 0,12 0,14 Calculation $\delta_{V0} = \delta_{V0-Fe}$ $\delta_{V\infty} = \delta_{V\infty-F}$	ar loading	rs RG M M16 0,13 0,16 0,12 0,14 ve displac		,14 ,18 ,12
³⁾ Perfor Table C Internal anchor F Displace Uncrack $\delta_{N0-Factor}$ Displace Uncrack $\delta_{V0-Factor}$ ¹⁾ Calcul $\delta_{N0} =$ $\delta_{N\infty} =$ $\tau =$	mance not asse c7.2: Disp threaded RG M I ement-Factors red concrete; T [mm/(N/mm ²)] ement-Factors red concrete; T [mm/kN] lation of effectiv δ _{N0-Factor} · τ δ _{N∞-Factor} · τ	essed placeme Ma for tensi Cemperat 0,1 0,1 for shea Cemperat 0,1 ve displac	ents for 1 on loadin ure range 0 3 r loading ² ure range 2 4 ement: der tension	fischer in M10 g ¹⁾ i I, II 0,11 0,14 0,12 0,12 0,14	2) (hreaded M12 0,12 0,12 0,15 0,12 0,14 Calculation $\delta_{V0} = \delta_{V0-Fe}$ $\delta_{V\infty} = \delta_{V\infty-F}$	ar loading	rs RG M M16 0,13 0,16 0,12 0,14 ve displac		,14 ,18 ,12

lomina of the b	l diameter ar Φ	8	10	12	14	16	20
Displac	ement-Factors	for tension lo	bading ¹⁾	•		•	-
Jncracl	ked concrete;	Femperature	range I, II			_	
N0-Factor	[mm/(N/mm ²)]	0,09	0,09	0,10	0,10	0,10	0,10
N∞-Factor		0,10	0,10	0,12	0,12	0,12	0,12
Cracked	d concrete; Ter	nperature rar	ıge I, II			1	
N0-Factor	[mm/(N/mm ²)]	_3)	0,12	0,13	0,13	0,13	0,13
N∞-Factor	[_3)	0,27	0,30	0,30	0,30	0,30
	ement-Factors		-				
Jncrack	ked or cracked		mperature rang	Ĩ	Т	ſ	
V0-Factor	[mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09
V∞-Factor	[0,12	0,12	0,11	0,11	0,11	0,10
¹⁾ Calcu	ulation of effectiv	ve displaceme	nt:	²⁾ Calculati	on of effective o	lisplacement:	
δ _{N0} =	$\delta_{ extsf{N0-Factor}}\cdot au$			$\delta_{V0} = \delta_{V0}$	-Factor · V		
δ _{N∞} =	·δ _{N∞-Factor} ·τ			$\delta_{V\infty} = \delta_{V\infty}$	∞-Factor · V		
	acting bond st			V = actir	ng shear loading		
fischer							
fischei	r injection sys	stem FIS AB	3				nex C 8